sy, the
M ﬁfew York %&gﬁ{ﬁf
CITY COLLEGE
CITY UNIVERSITY OF NEW YORK

HOMEWORK #2

Y
"
B e
X0
L

EQUIVALENT SPRING AND MASS (FIXED-
FIXED BEAM)

ME 411: System Modeling Analysis and Control

Fall 2010
Prof. B. Liaw

Submitted By: Pradip Thapa
September 29, 2010




Abstract

In mechanical system design, mathematical modeling of dynamic systems
is an essential tool for the study of the physics behind the study of the problem. In
this problem, a concentrated mass is mounted on a fixed-fixed beam at a distance
(@) from the left fixed end. The beam has a density (p), a Young’s modulus (E), a
uniform cross-sectional area (A), a moment of inertia (I) and a length (L). The
displacements, u and v, along the Cartesian coordinates are represented in, x and
y, respectively. However, that the boundary conditions at a fixed (or clamped or
built-in) end are prescribed deflection and slope. Analytical method was used for
solving ODEs developed for the system of the statically indeterminate system of
beam. At the end, the reactions and moment at the ends, the shear moment
diagram of the system and the equivalent spring mass approach was used to solve

for the system of linear algebraic equations with numerical software MATLAB.



1.0 Nomenclature
a = distance of loading from the origin (x = 0)
L = total length of the beam
p = density
A = cross sectional area
I = moment of inertia
E = young modulus
m, = mass of the load
m, = mass of spring
K, = spring constant
0(x) = slope of the deflected beamas the fucntion of length
v(x) = deflectionas the fucntion of length
M(x) = bending moment

V(x) = shearforce



1.

Background

A mathematical model can be broadly defined as a formulation or equation that
expresses the essential features of a physical system or process in mathematical terms. In very
general sense, it can be represented as a functional relationship of the form

independent variables, )

Dependent Variable = f ( parameters, forcing fucntions

where, the dependent variable is a characteristic that usually reflects the behavior or state
of the system. Independent variables are usually dimensions, such as time and space, the
parameters are reflective of the systems properties or composition and the forcing functions are
external influences acting upon the system.

Theory

The deflection of the beam, in particular the maximum deflection of the beam under
given loading is required to be analyze, in particular the knowledge is deflection of the beam is
required to analyze the statically indeterminate beam as the number of reactions at the supports

exceeds the number of equilibrium equations available to determine these unknowns.

The deformation of the member caused by the bending moment M is measured by the
curvature of the neutral surface. The curvature (c) is defined as the reciprocal of the radius of the
curvature (¢) and can be written as

1 _ Gmax
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Butiin elastic range, we have €y,q, =~
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In case of pure bending, the neutral axis passes through the centroid of the cross section,
Mc
Omax = T
Therefore,
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We have, the curvature of the a plane at a given point p(x, y) of a curve can be expressed

1 (D)
3

T ()
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Where, %, % are the first and second derivatives of the function y(x) represented by the

as

. . ay . . .
curve. But, in the case of the elastic curve of abeam, the slope ﬁ is very small and its square is

negligible compared to unity, we write, therefore,

1 d?y
@ dx?
Therefore, in the equations--------- @)
d’y M(x
S ®)
dx? IE

In mathematical expression, the equation obtain is a second order linear differential

equations, governing the equation for the case if the elastic curve.

3. Statically determinate vs. statically indeterminate

v

Fig.1.0 Free Body Diagram

U(x) = 0y=p,

v(x) = Oyx=0

H(X) = 0x=0 B(X) = 0x=L



There are six unknowns,Rav, R, Ry, Ry, Mg, My, , While only three equilibrium
equations are available.

From free body diagram above, writing the equations of equilibrium,
EF =O,ZF =0and ZMzO
v u
Let us write the equations,

T+ZF =0 Ry, +Ryp, =F
v

—>+ZF =0 Ry, +Rp, =0 Ry, =Ry,
u

My, —M,+F*a
L

anticlockwise(+) ZMA =0- Ry =

Therefore,

_FxL-M,+M,—Fxa

Ry, I

Since, from these equations we can’t measure all the unknowns; hence we conclude the
beam is statically indeterminate.

4. ODE method for calculate deflection, slope, bending moment,

shear force
Taking small section of the beam on left side

F=m.xg

M, +—— ¢
M(x)
Rq,
x —V
Rg,
FxL—M,+M,—Fxa
T+2F =0-V(x) = T —F<x—-a>"--——(0)
v

FxL—M,+M,—F=xa
I

anticlockwise(+) ZMC =0-> M(x)= xx—F<x—a>'—M,

And fromthe FBD: R,,, =R, =0



From the equation number (b)

d’y  M(x)
dx?2  IE
Integrating the equation three times and adding constants,

d’y F+«L-M,+M,—F=xa

El = —F<x—a>'-M
dx? L X @
dy 1F+«L—M,+M,—F *a F
El—=0(x) =— xx2——<x—a>*—M_ xx+C
dx ) 2 L 2 @ !
1F«L—M,+M,—F *a 1 1 ,
Elyzv(x)zg 7 *x3—gF<x—a>3—EMa*x +Cix+C,

Solving with first boundary condition and then from equation of equilibrium:

v(x) = 0x=9
0(x) = 0x=9
C,=C,=0
And also at
v(x) = 0x=y,
0(x) = 0y=

From these, solving via Maple 13

(—M + M —F-a—|—F-L)
b a 2 I 2
g2 - L — — M -L
Solve[[ 5. L > ( a) a Lo
(—Mb—i—Ma—F'a—i—F'L) -L3—£-(L—a)3—ﬂ'l,2
6- L 6 2 i
{Ma’Mb})
Fa(l’—2La+d?) A F(L—a)
Ma_ L2 ’Mb_ LZ
2oy 2 2 2 _ 2 _ 2
aF(L2 a)_Fa(L 22La-|-a)_|_Fa _a F(lé a)+Fa(L 22La+a)—Fa+FL
L L R = L L
a

L



FxL—-—M,+M,—F*a
Shear force:V(x) = 3
Bendina M dzy_M _ 1 (FxL-M,+M,~Fxa ”
0 < x < ¢ | Bending oment.dxz— (x)—EI< 3 * X — a)>
d 1 /1F«xL—M,+M,—F xa
Slope: %z 6(x) :E(E b ; - * x2 —Ma*x)
, 1 (1F«L—-M,+M,—F*a _ 1 ,
\ Deflectlon:.v(x)—ﬁ(g 3 * X _EM“*X) )
( 2 )
FxL—-M,+M,—F*a
Shear force:V(x) = L —F
, d?y 1 FxL-M,+M,—F xa
a<x<L<BendmgMoment.W—M(x)—E( 0 *x—F(x—a)—Ma)>
d 1 AF+L—-My,+M,—F *a F
Slope:£=9(x)=ﬁ<z bL = *xz—E(x—a)z—Ma*x)
) 1 1F+L-M,+M,—Fx*a ., 1 5 )
LDeflectton:.v(x)z—(— * X —gF(x—a) —EMa*x) )

( 1 \

EI\6 L

5. Shear moment diagram for (0 < X < L)

plot(shear (x),x=0..L)
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plot(moment(x),x=0..L)
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6. Deflection and slope at X=a.
Deflection:

(1) Fxa3(3*xa?*L—a3+L3—-3*a*L?)
3 L3*ExIn

Slope:

(1) a’xFx(5xa’+L—2+a3+L3—4xaxL?)

2 L3xExIn



7. Equivalent spring mass and spring constant.

The dynamics of the beam mass system can be views as an equivalent mass- spring

system:
mA(t) + K A(R) =0 > m,=m,+m,

Where,

A(t) = time history of the deflectiona at the given locationwhere the mass is mounted

m, = mass of th beam = pAL
K. = equivalent spring constant

concentric load

=
Il

m. = total load
(@A Kc@x =a
A= —v(0) = v(X)|x=a

L2 —-2xL*a+a?

1 2 L—-a
(—E)*(—a *F*?+F*a*

—F*a+F*L)*§+($)*F*a3*

L2—2+L*a+a?

A= L2 L2
E *In
solve| A = 1
E In
11 (_azF(L—a) L Fa(l?—2La+a?)
6 L L2 Lz
3 (7,2 2
—Fa+FLJa3J—|—% Fa’ (L iL‘“L")],FJ
L

3xAx[3*xE=xIn

F =
a®x(3xa?xL—a3+13—-3x*xaxl2)

Consider the clamped-clamped beam as a spring oscillating under the action of the

concentrated mass. From Hooke’s law: F = K.A, the equivalent spring constant should be:

3xAx[3%xExIn

KA

3%x[3*ExIn
Ke

=a3*(3*a2*L—a3+L3—3*a*L2)

:a3*(B*aZ*L—a3+L3—3*a*L2)



(a)Ke@x=a=§

A= —v(0) =v(x)| _,_

N

L2—2+L*a+a?

<i*(—a2*F*§+F*a* —F*a+F*L))*L2—

48 L2
() Fe(@) 1) ~@)rrracar-2zerearad
A= E * In

L (1 [ dPFE-a)
Solve[A Eln( 48[ 2

Fa(L2—2La+a2)
L2

_ 2, 1 (1
Fa—i—FL]L + 6F(2L

+

3
—aj + %Fa (I?-2La +a2)],F]

—192 * A+ E *In

Consider the clamped-clamped beam as a spring oscillating under the action of the
concentrated mass. From Hooke’s law: F = K,A, the equivalent spring constant should be:

—192 *A*E xIn
A__

e L3
—192 *E = In
Ke =—1 —

Following the justification of the elastic curve, the deflection is given by,

] 1 /1F+xL—-My,+M,—F *xa 1
0<x< a{Deflectlon: vix) = —(— *x3 — =M, * xz)}
EI\6 L 2
< <L{D lecti ) 1(1F*L—Mb+Ma—F*a 3 1F 3 1M 2)}
i, =—|= * X0 —— - — o Mg *
a<x< eflection:.v(x EI\e L x p (x—a) > Ma X



Solving v(x) for a=L/2
16*%AxExInxx3  12xAxExInxx?
L3 L2
0<x<—=
E xIn 2

\

Assume that during vibration the form of this beam deflection (i.e., the elastic
curve) is preserved (Justification?), then:

I\3
16%AxExIn*x3 32*A*E*1n*(x—5) 12*AxExInxx?
+ +
L3 L3
ExIn

( )
_16*E*In*x3L12*E*In*x2
A L3 ! L2
: ov(x,t) ExIn
v(x) = Fra 3
16+ExIn+x3 | 32*E*In*(x—§) | 12+ExInxx2
A L3 L3 L2
ExIn
\ J

The kinetic energy carried by the beam during vibration is:

K.E.= f%[v('x)]zdm = f%[v('x)]szdx

Thus
. pAN? {F l4x2(—4x + 3L)]2 N L[ 4(—4x3 + 9x2L — 6xI2 + 13)]

T2 ), IE L B IE

2

. _pAA2{13L+ 83 L}

T 2 707 " 280

pAA?

K.E.=——{0482L}

Equate this kinetic energy with that of the equivalent system:

1.
K.E = —m,A?

1 . pAA2
M=

{0.482L} » m, = My {0.482}



Appendix

These are random parameter for graph plot:
L:=10

10
a:=3
3
F = 1000(
1000(
E = 200-10°
20000000000
In=9-10"°
9
1000000000
2 2
Mé__Fa(L iLa+a)
L
1470C
2 J—
M, a F([; a)
L
630C

Vshear = x — piecewise [0 <x<a,
(—Mb +M —F-a+ F‘L)
a

(—Mb—i—MaliF-a) j

,a<lx<L,

L

M, +M,—Fa+FL

X — piecewise [0 <xandx <a, 7

—Mb—i-Ma—Faj

dx<L
and x < L, I

moment := x — piecewise| 0 < x < a,

( (—Mb +M, —Fa+ F-L)

E-In
1
E-In

L
(-My+M, —Fa+FL)
( I -x—F-(x—a)—Ma]]

-x—Ma],aSXSL,




x— piecewise| 0 < x and x < a,

(—Mb—l-Ma—Fa—i-FL)x

-M
L Ca<xandx<L
e ,a<xandx <L,
(—Mb+Ma—Fa~I—FL)x
7 —F(x—a)—M,
EIn
slope = x — piecewise (0 <x<a, E-lln
(—M +M —F-a+F~L)
b a 2 1
. Xt = . <x< r—
( 2. L X Ma x]’a_X_L’ E-In
-M, +M, —F-a+FL)
. ( b a . 2_£. — 2 _ .
( 2. L X 2 (x —a) Max]]

x — piecewise | 0 < x and x < a,

| (M, +M,—Fa+FL)

x2

2 L

- M

a

X

EIn

| ("M, +M,—Fa+FL)x>

,a<xandx < L,

F(x—a)z—Max

2 L
E In
. . . 1
deflection = x — piecewise| 0 < x < a,
E-In
-M, + M —F-a+ F-L M
. ( b aﬁ~L )-x3— 2a~x2],a£XSL,
-M, +M —F-a+F-L
1 (—M, a ).X3_£_(X_a)3
E-In 6- L 6
2
x —piecewise | 0 < x and x < a,
1 (M, + M, — Fa+FL)x® 1 )
— - — = M x
6 L 2 “ a < x and x
E In T
<L,
1 1 (M, + M, —Fa+FL)x 1 5
2 — — F(x —a)
EIn 6 L 6



plot(shear (x),x=0..L)
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plot(moment(x),x=0..L)




plot(slope(x),x=0..L)




