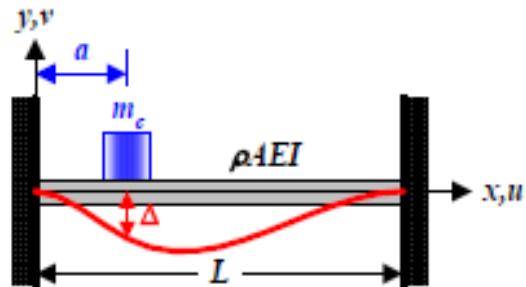


CITY COLLEGE

CITY UNIVERSITY OF NEW YORK

HOMEWORK #2



EQUIVALENT SPRING AND MASS (FIXED-FIXED BEAM)

ME 411: System Modeling Analysis and Control

Fall 2010

Prof. B. Liaw

Submitted By: Pradip Thapa

September 29, 2010

Abstract

In mechanical system design, mathematical modeling of dynamic systems is an essential tool for the study of the physics behind the study of the problem. In this problem, a concentrated mass is mounted on a fixed-fixed beam at a distance (a) from the left fixed end. The beam has a density (ρ), a Young's modulus (E), a uniform cross-sectional area (A), a moment of inertia (I) and a length (L). The displacements, u and v , along the Cartesian coordinates are represented in, x and y , respectively. However, that the boundary conditions at a fixed (or clamped or built-in) end are prescribed deflection and slope. Analytical method was used for solving ODEs developed for the system of the statically indeterminate system of beam. At the end, the reactions and moment at the ends, the shear moment diagram of the system and the equivalent spring mass approach was used to solve for the system of linear algebraic equations with numerical software MATLAB.

1.0 Nomenclature

a = *distance of loading from the origin ($x = 0$)*

L = *total length of the beam*

ρ = *density*

A = *cross sectional area*

I = *moment of inertia*

E = *young modulus*

m_c = *mass of the load*

m_e = *mass of spring*

K_e = *spring constant*

$\theta(x)$ = *slope of the deflected beam as the function of length*

$v(x)$ = *deflection as the function of length*

$M(x)$ = *bending moment*

$V(x)$ = *shear force*

1. Background

A mathematical model can be broadly defined as a formulation or equation that expresses the essential features of a physical system or process in mathematical terms. In very general sense, it can be represented as a functional relationship of the form

$$\text{Dependent Variable} = f \left(\begin{array}{l} \text{independent variables,} \\ \text{parameters,} \quad \text{forcing functions} \end{array} \right)$$

where, the dependent variable is a characteristic that usually reflects the behavior or state of the system. Independent variables are usually dimensions, such as time and space, the parameters are reflective of the systems properties or composition and the forcing functions are external influences acting upon the system.

2. Theory

The deflection of the beam, in particular the maximum deflection of the beam under given loading is required to be analyze, in particular the knowledge is deflection of the beam is required to analyze the statically indeterminate beam as the number of reactions at the supports exceeds the number of equilibrium equations available to determine these unknowns.

The deformation of the member caused by the bending moment M is measured by the curvature of the neutral surface. The curvature (c) is defined as the reciprocal of the radius of the curvature (φ) and can be written as

$$\frac{1}{\varphi} = \frac{\epsilon_{max}}{c}$$

But in elastic range, we have $\epsilon_{max} = \frac{\sigma_{max}}{E}$

$$\frac{1}{\varphi} = \frac{1}{c} \frac{\sigma_{max}}{E}$$

In case of pure bending, the neutral axis passes through the centroid of the cross section,

$$\sigma_{max} = \frac{Mc}{I}$$

Therefore,

$$\frac{1}{\varphi} = \frac{1}{c} \frac{1}{E} \frac{Mc}{I} = \frac{M}{IE} \quad \text{--- (a)}$$

We have, the curvature of the a plane at a given point $p(x, y)$ of a curve can be expressed as

$$\frac{1}{\varphi} = \frac{\left(\frac{d^2y}{dx^2}\right)}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}$$

Where, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ are the first and second derivatives of the function $y(x)$ represented by the curve. But, in the case of the elastic curve of a beam, the slope $\frac{dy}{dx}$ is very small and its square is negligible compared to unity, we write, therefore,

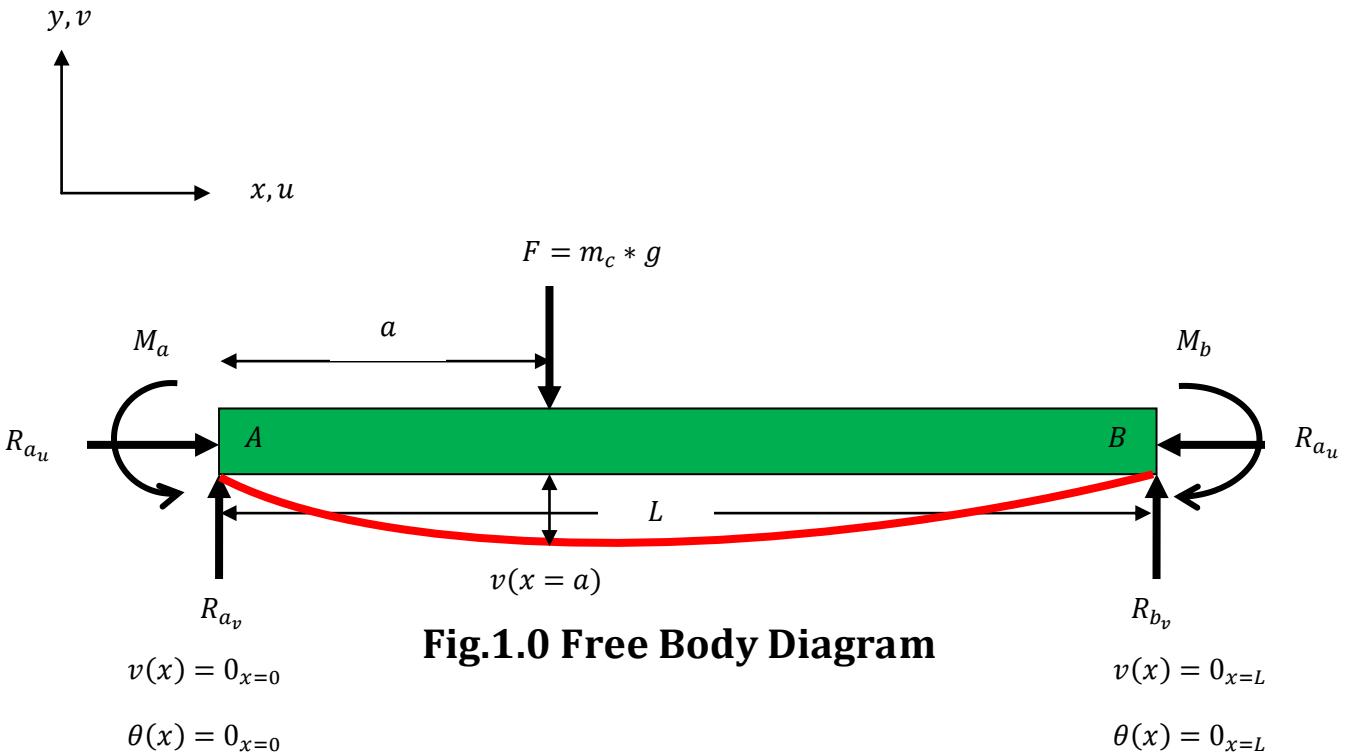
$$\frac{1}{\varphi} = \frac{d^2y}{dx^2}$$

Therefore, in the equations----- (a)

$$\frac{d^2y}{dx^2} = \frac{M(x)}{IE} \quad \text{--- (b)}$$

In mathematical expression, the equation obtain is a second order linear differential equations, governing the equation for the case if the elastic curve.

3. Statically determinate vs. statically indeterminate



There are six unknowns, $R_{a_v}, R_{a_u}, R_{b_u}, R_{b_v}, M_a, M_b$, while only three equilibrium equations are available.

From free body diagram above, writing the equations of equilibrium,

$$\sum F_v = 0, \sum F_u = 0 \text{ and } \sum M = 0$$

Let us write the equations,

$$\uparrow + \sum F_v = 0 \rightarrow R_{a_v} + R_{b_v} = F$$

$$\rightarrow + \sum F_u = 0 \rightarrow R_{a_u} + R_{b_u} = 0 \rightarrow R_{a_u} = -R_{b_u}$$

$$\text{anticlockwise(+)} \sum M_A = 0 \rightarrow R_{b_v} = \frac{M_b - M_a + F * a}{L}$$

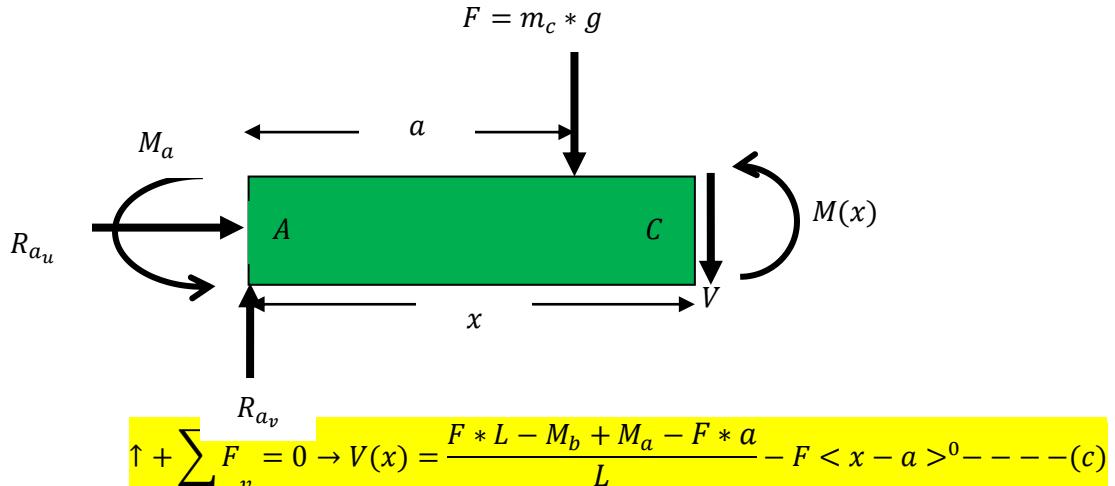
Therefore,

$$R_{a_v} = \frac{F * L - M_b + M_a - F * a}{L}$$

Since, from these equations we can't measure all the unknowns; hence we conclude the beam is statically indeterminate.

4. ODE method for calculate deflection, slope, bending moment, shear force

Taking small section of the beam on left side



$$\text{anticlockwise(+)} \sum M_c = 0 \rightarrow M(x) = \frac{F * L - M_b + M_a - F * a}{L} * x - F < x - a >^1 - M_a$$

And from the FBD: $R_{a_u} = R_{b_u} = 0$

This is a step function: $\langle x - a \rangle^0 = \begin{cases} 1 & x \geq a \\ 0 & x < a \end{cases}$ and $\langle x - a \rangle^n = \begin{cases} (x - a)^n & x \geq a \\ 0 & x < a \end{cases}$

From the equation number (b)

$$\frac{d^2y}{dx^2} = \frac{M(x)}{IE}$$

Integrating the equation three times and adding constants,

$$EI \frac{d^2y}{dx^2} = \frac{F * L - M_b + M_a - F * a}{L} * x - F \langle x - a \rangle^1 - M_a$$

$$EI \frac{dy}{dx} = \theta(x) = \frac{1}{2} \frac{F * L - M_b + M_a - F * a}{L} * x^2 - \frac{F}{2} \langle x - a \rangle^2 - M_a * x + C_1$$

$$EI y = v(x) = \frac{1}{6} \frac{F * L - M_b + M_a - F * a}{L} * x^3 - \frac{1}{6} F \langle x - a \rangle^3 - \frac{1}{2} M_a * x^2 + C_1 x + C_2$$

Solving with first boundary condition and then from equation of equilibrium:

$$v(x) = 0_{x=0}$$

$$\theta(x) = 0_{x=0}$$

$$C_1 = C_2 = 0$$

And also at

$$v(x) = 0_{x=L}$$

$$\theta(x) = 0_{x=L}$$

From these, solving via Maple 13

$$\begin{aligned} & \text{solve} \left(\left[\frac{(-M_b + M_a - F \cdot a + F \cdot L)}{2 \cdot L} \cdot L^2 - \frac{F}{2} \cdot (L - a)^2 - M_a \cdot L, \right. \right. \\ & \left. \left. \frac{(-M_b + M_a - F \cdot a + F \cdot L)}{6 \cdot L} \cdot L^3 - \frac{F}{6} \cdot (L - a)^3 - \frac{M_a}{2} \cdot L^2 \right], \right. \\ & \left. \{M_a, M_b\} \right) \end{aligned}$$

$$\left\{ M_a = \frac{F a (L^2 - 2 L a + a^2)}{L^2}, M_b = \frac{a^2 F (L - a)}{L^2} \right\}$$

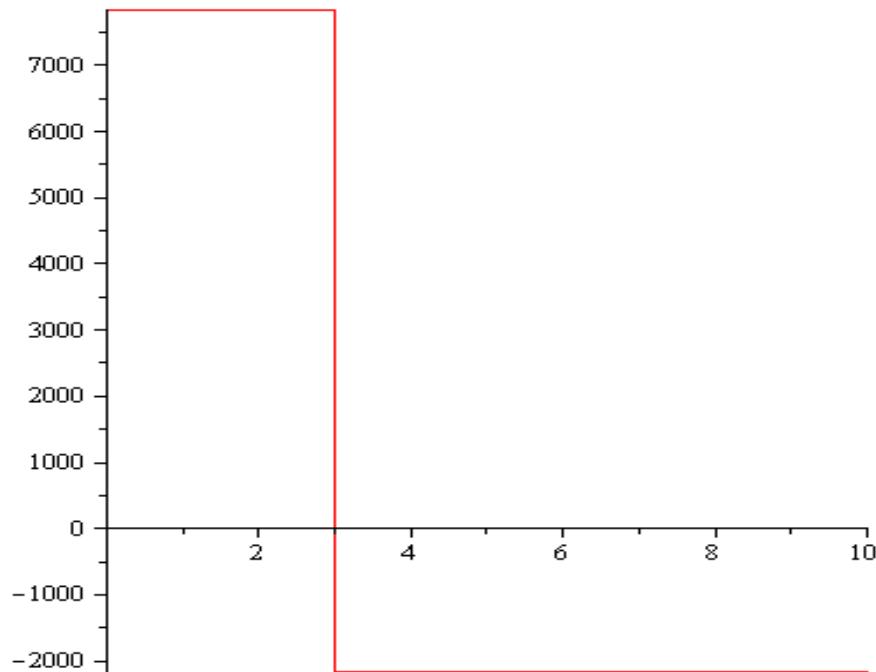
$$R_{a_v} = \frac{\frac{a^2 F (L - a)}{L^2} - \frac{F a (L^2 - 2 L a + a^2)}{L^2} + F a}{L} \quad R_{a_v} = \frac{-\frac{a^2 F (L - a)}{L^2} + \frac{F a (L^2 - 2 L a + a^2)}{L^2} - F a + F L}{L}$$

$$0 \leq x < a \left\{ \begin{array}{l} \text{Shear force: } V(x) = \frac{1}{L} (F * L - M_b + M_a - F * a) \\ \text{Bending Moment: } \frac{d^2y}{dx^2} = M(x) = \frac{1}{EI} \left(\frac{1}{L} (F * L - M_b + M_a - F * a) * x - M_a \right) \\ \text{Slope: } \frac{dy}{dx} = \theta(x) = \frac{1}{EI} \left(\frac{1}{2} \frac{1}{L} (F * L - M_b + M_a - F * a) * x^2 - M_a * x \right) \\ \text{Deflection: } v(x) = \frac{1}{EI} \left(\frac{1}{6} \frac{1}{L} (F * L - M_b + M_a - F * a) * x^3 - \frac{1}{2} M_a * x^2 \right) \end{array} \right\}$$

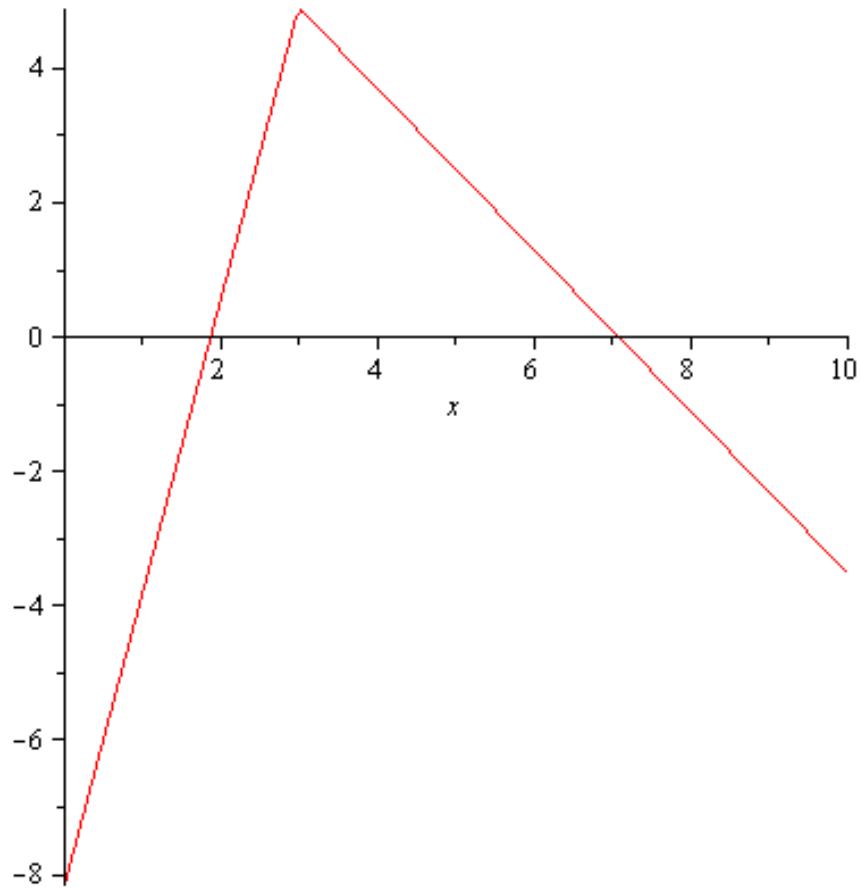
$$a \leq x \leq L \left\{ \begin{array}{l} \text{Shear force: } V(x) = \frac{2}{L} (F * L - M_b + M_a - F * a) - F \\ \text{Bending Moment: } \frac{d^2y}{dx^2} = M(x) = \frac{1}{EI} \left(\frac{2}{L} (F * L - M_b + M_a - F * a) * x - F(x - a) - M_a \right) \\ \text{Slope: } \frac{dy}{dx} = \theta(x) = \frac{1}{EI} \left(\frac{1}{2} \frac{2}{L} (F * L - M_b + M_a - F * a) * x^2 - \frac{F}{2} (x - a)^2 - M_a * x \right) \\ \text{Deflection: } v(x) = \frac{1}{EI} \left(\frac{1}{6} \frac{2}{L} (F * L - M_b + M_a - F * a) * x^3 - \frac{1}{6} F(x - a)^3 - \frac{1}{2} M_a * x^2 \right) \end{array} \right\}$$

5. Shear moment diagram for ($0 \leq X \leq L$)

`plot(shear(x), x = 0 .. L)`



plot(moment(x), x = 0 .. L)



6. Deflection and slope at X=a.

Deflection:

$$-\left(\frac{1}{3}\right) \frac{F*a^3(3*a^2*L - a^3 + L^3 - 3*a*L^2)}{L^3*E*In}$$

Slope:

$$-\left(\frac{1}{2}\right) \frac{a^2*F*(5*a^2*L - 2*a^3 + L^3 - 4*a*L^2)}{L^3*E*In}$$

7. Equivalent spring mass and spring constant.

The dynamics of the beam mass system can be views as an equivalent mass- spring system:

$$m_t \ddot{\Delta}(t) + K_e \Delta(t) = 0 \quad \rightarrow m_t = m_c + m_e$$

Where,

$\Delta(t)$ = time history of the deflectiona at the given locationwhere the mass is mounted

m_e = mass of th beam = $\rho A L$

K_e = equivalent spring constant

m_c = concentric load

m_t = total load

$$(a) K_e @ x = a$$

$$\Delta = -v(0) = v(x)|_{x=a}$$

$$\Delta = \frac{\left(-\frac{1}{6}\right) * \left(-a^2 * F * \frac{L-a}{L^2} + F * a * \frac{L^2 - 2 * L * a + a^2}{L^2} - F * a + F * L\right) * \frac{a^3}{L} + \left(\frac{1}{2}\right) * F * a^3 * \frac{L^2 - 2 * L * a + a^2}{L^2}}{E * I_n}$$

$$solve \left(\Delta = \frac{1}{E I_n} \left(-\frac{1}{6} \frac{1}{L} \left(\left(-\frac{a^2 F (L-a)}{L^2} + \frac{F a (L^2 - 2 L a + a^2)}{L^2} - F a + F L \right) a^3 \right) + \frac{1}{2} \frac{F a^3 (L^2 - 2 L a + a^2)}{L^2} \right), F \right)$$

$$F = \frac{3 * \Delta * L^3 * E * I_n}{a^3 * (3 * a^2 * L - a^3 + L^3 - 3 * a * L^2)}$$

Consider the clamped-clamped beam as a spring oscillating under the action of the concentrated mass. From Hooke's law: $F = K_e \Delta$, the equivalent spring constant should be:

$$K_e \Delta = \frac{3 * \Delta * L^3 * E * I_n}{a^3 * (3 * a^2 * L - a^3 + L^3 - 3 * a * L^2)}$$

$$K_e = \frac{3 * L^3 * E * I_n}{a^3 * (3 * a^2 * L - a^3 + L^3 - 3 * a * L^2)}$$

$$[a] K_e @ x = a = \frac{L}{2}$$

$$\Delta = -v(0) = v(x)|_{x=a=\frac{L}{2}}$$

$$\Delta = \frac{\left(\frac{1}{48} * \left(-a^2 * F * \frac{L-a}{L^2} + F * a * \frac{L^2 - 2 * L * a + a^2}{L^2} - F * a + F * L \right) \right) * L^2 - \left(\frac{1}{6} \right) * F * \left(\left(\frac{1}{2} \right) * L - a \right)^3 - \left(\frac{1}{8} \right) * F * a * (L^2 - 2 * L * a + a^2)}{E * In}$$

$$solve \left(\Delta = \frac{1}{E In} \left(-\frac{1}{48} \left(-\frac{a^2 F (L - a)}{L^2} \right. \right. \right. \\ \left. \left. \left. + \frac{F a (L^2 - 2 L a + a^2)}{L^2} - F a + F L \right) L^2 + \frac{1}{6} F \left(\frac{1}{2} L \right. \right. \\ \left. \left. - a \right)^3 + \frac{1}{8} F a (L^2 - 2 L a + a^2) \right), F \right)$$

$$F = \frac{-192 * \Delta * E * In}{L^3}$$

Consider the clamped-clamped beam as a spring oscillating under the action of the concentrated mass. From Hooke's law: $F = K_e \Delta$, the equivalent spring constant should be:

$$K_e \Delta = \frac{-192 * \Delta * E * In}{L^3}$$

$$K_e = \frac{-192 * E * In}{L^3}$$

Following the justification of the elastic curve, the deflection is given by,

$$0 \leq x < a \left\{ \text{Deflection: } v(x) = \frac{1}{EI} \left(\frac{1}{6} \frac{F * L - M_b + M_a - F * a}{L} * x^3 - \frac{1}{2} M_a * x^2 \right) \right\}$$

$$a \leq x \leq L \left\{ \text{Deflection: } v(x) = \frac{1}{EI} \left(\frac{1}{6} \frac{F * L - M_b + M_a - F * a}{L} * x^3 - \frac{1}{6} F(x - a)^3 - \frac{1}{2} M_a * x^2 \right) \right\}$$

Solving $v(x)$ for $a=L/2$

$$\begin{aligned} & \left(\frac{-\frac{16\Delta E In x^3}{L^3} + \frac{12\Delta E In x^2}{L^2}}{E * In} \right) 0 \leq x < \frac{L}{2} \\ & \left(\frac{-\frac{16\Delta E In x^3}{L^3} + \frac{32\Delta E In (x - \frac{L}{2})^3}{L^3} + \frac{12\Delta E In x^2}{L^2}}{E * In} \right) \frac{L}{2} \leq x \leq L \end{aligned}$$

Assume that during vibration the form of this beam deflection (i.e., the elastic curve) is preserved (Justification?), then:

$$\dot{v}(x) = \frac{\partial v(x, t)}{\partial t} = \left\{ \begin{array}{l} \dot{\Delta} \left(\frac{-\frac{16E In x^3}{L^3} + \frac{12E In x^2}{L^2}}{E In} \right) \\ \dot{\Delta} \left(\frac{-\frac{16E In x^3}{L^3} + \frac{32E In (x - \frac{L}{2})^3}{L^3} + \frac{12E In x^2}{L^2}}{E In} \right) \end{array} \right\}$$

The kinetic energy carried by the beam during vibration is:

$$K.E. = \int \frac{1}{2} [\dot{v}(x)]^2 dm = \int \frac{1}{2} [\dot{v}(x)]^2 \rho A dx$$

Thus

$$K.E. = \frac{\rho A \dot{\Delta}^2}{2} \left\{ \int_0^{\frac{L}{2}} \left[\frac{4x^2(-4x + 3L)}{L^3} \right]^2 dx + \int_{\frac{L}{2}}^L \left[-\frac{4(-4x^3 + 9x^2L - 6xL^2 + L^3)}{L^3} \right]^2 dx \right\}$$

$$K.E. = \frac{\rho A \dot{\Delta}^2}{2} \left\{ \frac{13}{70} L + \frac{83}{280} L \right\}$$

$$K.E. = \frac{\rho A \dot{\Delta}^2}{2} \{0.482L\}$$

Equate this kinetic energy with that of the equivalent system:

$$K.E. = \frac{1}{2} m_e \dot{\Delta}^2$$

$$\frac{1}{2} m_e \dot{\Delta}^2 = \frac{\rho A \dot{\Delta}^2}{2} \{0.482L\} \rightarrow m_e = m_{beam} \{0.482\}$$

Appendix

These are random parameter for graph plot:

$$L := 10$$

$$10$$

$$a := 3$$

$$3$$

$$F := 10000$$

$$10000$$

$$E := 200 \cdot 10^9$$

$$20000000000$$

$$In := 9 \cdot 10^{-9}$$

$$\frac{9}{1000000000}$$

$$M_a := \frac{F a (L^2 - 2 L a + a^2)}{L^2}$$

$$14700$$

$$M_b := \frac{a^2 F (L - a)}{L^2}$$

$$6300$$

$$Vshear := x \rightarrow \text{piecewise} \left(0 \leq x < a, \frac{(-M_b + M_a - F \cdot a + F \cdot L)}{L}, a \leq x \leq L, \frac{(-M_b + M_a - F \cdot a)}{L} \right)$$

$$x \rightarrow \text{piecewise} \left(0 \leq x \text{ and } x < a, \frac{-M_b + M_a - F a + F L}{L}, a \leq x \text{ and } x \leq L, \frac{-M_b + M_a - F a}{L} \right)$$

$$moment := x \rightarrow \text{piecewise} \left(0 \leq x < a, \frac{1}{E \cdot In} \cdot \left(\frac{(-M_b + M_a - F \cdot a + F \cdot L)}{L} \cdot x - M_a \right), a \leq x \leq L, \frac{1}{E \cdot In} \cdot \left(\frac{(-M_b + M_a - F \cdot a + F \cdot L)}{L} \cdot x - F \cdot (x - a) - M_a \right) \right)$$

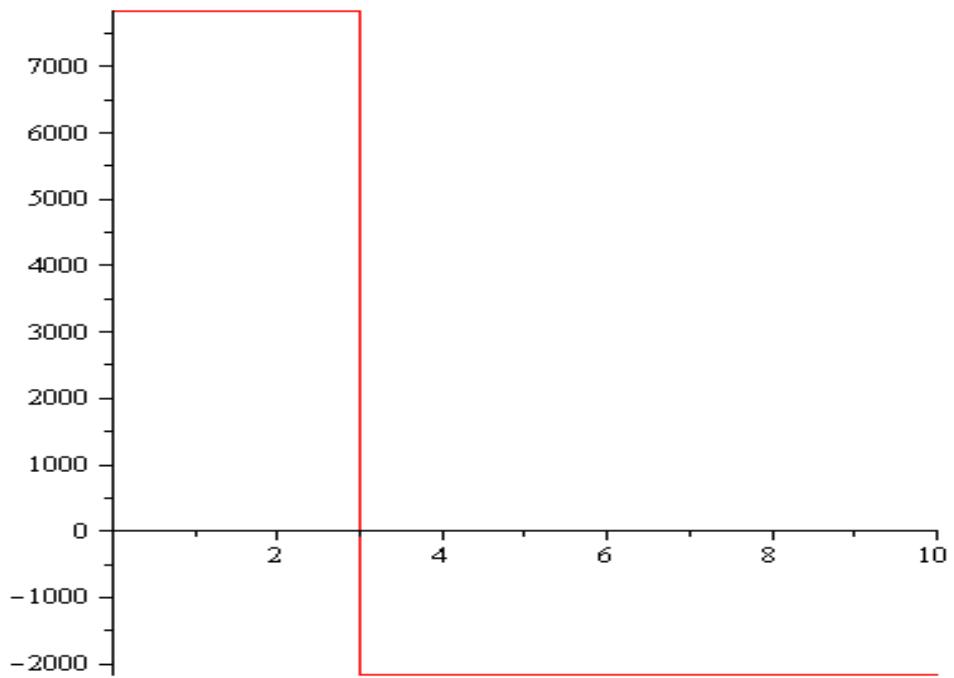
$$\begin{aligned}
& x \rightarrow \text{piecewise} \left(\begin{array}{l} 0 \leq x \text{ and } x < a, \\
\frac{\frac{(-M_b + M_a - F \cdot a + F \cdot L) \cdot x}{L} - M_a}{E \cdot In}, a \leq x \text{ and } x \leq L, \\
\frac{\frac{(-M_b + M_a - F \cdot a + F \cdot L) \cdot x}{L} - F \cdot (x - a) - M_a}{E \cdot In} \end{array} \right)
\end{aligned}$$

$$\begin{aligned}
& \text{slope} := x \rightarrow \text{piecewise} \left(\begin{array}{l} 0 \leq x < a, \frac{1}{E \cdot In} \\
\cdot \left(\frac{\frac{(-M_b + M_a - F \cdot a + F \cdot L)}{2 \cdot L} \cdot x^2 - M_a \cdot x}{E \cdot In}, a \leq x \leq L, \frac{1}{E \cdot In} \right. \right. \\
\cdot \left. \left. \left(\frac{\frac{(-M_b + M_a - F \cdot a + F \cdot L)}{2 \cdot L} \cdot x^2 - \frac{F}{2} \cdot (x - a)^2 - M_a \cdot x}{E \cdot In} \right) \right) \right. \\
x \rightarrow \text{piecewise} \left(\begin{array}{l} 0 \leq x \text{ and } x < a, \\
\frac{\frac{1}{2} \frac{(-M_b + M_a - F \cdot a + F \cdot L) \cdot x^2}{L} - M_a \cdot x}{E \cdot In}, a \leq x \text{ and } x \leq L, \\
\frac{\frac{1}{2} \frac{(-M_b + M_a - F \cdot a + F \cdot L) \cdot x^2}{L} - \frac{1}{2} F \cdot (x - a)^2 - M_a \cdot x}{E \cdot In} \end{array} \right)
\end{array} \right)
\end{aligned}$$

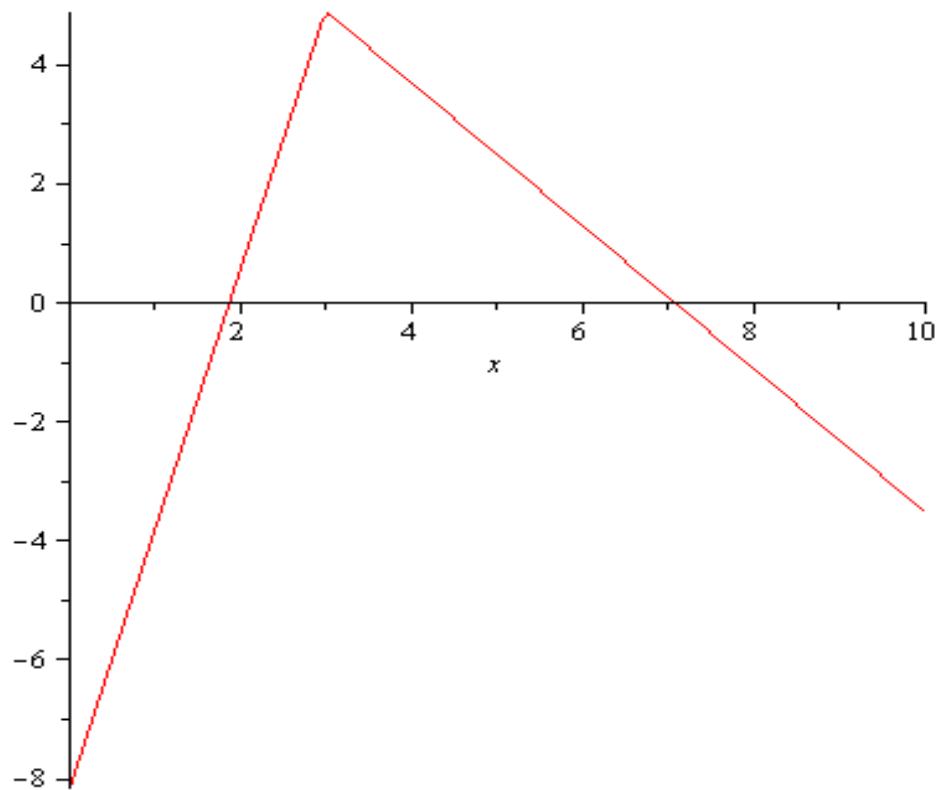
$$\begin{aligned}
& \text{deflection} := x \rightarrow \text{piecewise} \left(\begin{array}{l} 0 \leq x < a, \frac{1}{E \cdot In} \\
\cdot \left(\frac{\frac{(-M_b + M_a - F \cdot a + F \cdot L)}{6 \cdot L} \cdot x^3 - \frac{M_a}{2} \cdot x^2}{E \cdot In}, a \leq x \leq L, \right. \right. \\
\frac{1}{E \cdot In} \cdot \left(\frac{\frac{(-M_b + M_a - F \cdot a + F \cdot L)}{6 \cdot L} \cdot x^3 - \frac{F}{6} \cdot (x - a)^3}{E \cdot In} \right. \\
\left. \left. - \frac{M_a}{2} \cdot x^2 \right) \right) \\
x \rightarrow \text{piecewise} \left(\begin{array}{l} 0 \leq x \text{ and } x < a, \\
\frac{\frac{1}{6} \frac{(-M_b + M_a - F \cdot a + F \cdot L) \cdot x^3}{L} - \frac{1}{2} M_a \cdot x^2}{E \cdot In}, a \leq x \text{ and } x \leq L, \\
\frac{\frac{1}{6} \frac{(-M_b + M_a - F \cdot a + F \cdot L) \cdot x^3}{L} - \frac{1}{6} F \cdot (x - a)^3}{E \cdot In} \end{array} \right)
\end{array} \right)
\end{aligned}$$

$$\begin{aligned}
& \leq L, \\
& \frac{1}{E \cdot In} \left(\frac{1}{6} \frac{(-M_b + M_a - F \cdot a + F \cdot L) \cdot x^3}{L} - \frac{1}{6} F \cdot (x - a)^3 \right. \\
& \left. - \frac{1}{2} M_a \cdot x^2 \right)
\end{aligned}$$

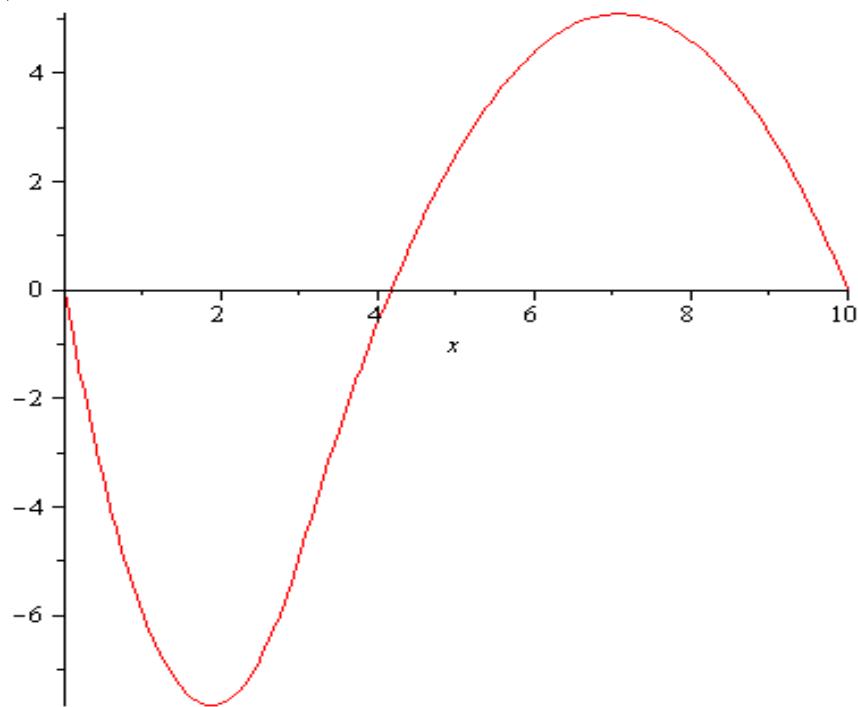
plot(shear(x), x = 0 .. L)



plot(moment(x), x = 0 .. L)



plot(slope(x),x = 0 ..L)



plot(deflection (x),x = 0 ..L)

